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Reciprocal	lattice	vector	perpendicular	to	plane

The	reciprocal	lattice	can	be	thought	of	as	a	set	of	wave	vectors	[math]	\mathbf{G}	[/math]	that	satisfy	certain	conditions	when	multiplied	by	the	plane	wave	[math]	e^{i	\mathbf{k}\mathbf{r}}	[/math].	Specifically,	for	any	vector	[math]	\mathbf{R}	[/math]	in	the	Bravais	lattice	([math]	\mathbf{R}=	n_1	\mathbf{a}_1	+	n_2	\mathbf{a}_2	+	n_3
\mathbf{a}_3	[/math]),	we	have	the	equation	[math]	e^{i	\mathbf{G}	\mathbf{r}}	=	e^{i	\mathbf{G	(r	+	R)}}	[/math]	and	[math]	e^{i	\mathbf	{GR}}=1	[/math].	This	provides	a	more	physical	definition	of	the	reciprocal	lattice.	Using	this	definition,	we	can	show	that	three	vectors	[math]	b_1,	b_2,	b_3	[/math]	form	a	reciprocal	lattice	and	every
vector	in	the	reciprocal	lattice	has	a	form	[math]	G=k_1	\mathbf{b}_1	+	k_2	\mathbf{b}_2	+	k_3	\mathbf{b}_3	[/math],	where	[math]	k_1,	k_2,	k_3	\in	Z	[/math].	We	can	also	prove	two	properties	of	the	reciprocal	lattice:	(1)	for	any	set	of	lattice	planes	separated	by	a	distance	d,	there	are	reciprocal	vectors	perpendicular	to	them	and	the	shortest
vector	has	a	length	2π/d;	and	(2)	for	any	reciprocal	lattice	vector	[math]	\mathbf{G}	[/math],	there	is	a	set	of	planes	normal	to	[math]	\mathbf{G}	[/math]	separated	by	the	distance	d,	and	the	shortest	reciprocal	vector	parallel	to	[math]	\mathbf{G}	[/math]	has	a	length	2π/d.	The	reciprocal	lattice	basis	vectors	are	not	necessarily	parallel	or
perpendicular	to	their	corresponding	real	lattice	basis	vectors.	Instead,	they	are	related	by	specific	equations	that	involve	cross	products	of	the	basis	vectors.	For	example,	the	equation	[math]	\mathbf{b}^*_1	=	\frac{2\pi}{V}\mathbf{b}_2\times\mathbf{b}_3	[/math]	shows	that	the	reciprocal	lattice	vector	[math]	\mathbf{b}^*_1	[/math]	is
perpendicular	to	both	[math]	\mathbf{b}_2	[/math]	and	[math]	\mathbf{b}_3	[/math].	However,	this	does	not	imply	that	[math]	\mathbf{b}^*_1	[/math]	is	parallel	or	perpendicular	to	either	[math]	\mathbf{b}_2	[/math]	or	[math]	\mathbf{b}_3	[/math].	In	reciprocal	space,	a	set	of	crystal	planes	is	separated	by	the	inverse	length	of	real-space	lattice
basis	vectors.	For	instance,	if	a	(100)	plane	has	unit	cell	parameter	'a',	its	reciprocal	lattice	will	appear	'1/a'	apart.	The	reciprocal	lattice	vector	can	be	translated	to	another	origin	while	maintaining	symmetry,	just	like	its	real	lattice	counterpart.	When	plotting	planes	in	reciprocal	space,	the	longer	interplanar	spacing	falls	closer	to	the	origin,	whereas
intermediate	planar	spacing	falls	twice	the	length	of	the	preceding	plane.	This	preserves	crystal	symmetry	from	real-space	to	reciprocal	space.	The	relationship	between	real	and	reciprocal	lattice	basis	vectors	is:	a*.	(b	×	c)	=	1	/	V,	where	'V'	is	the	volume	of	the	real	crystal	unit	cell.	Reciprocal	basis	vector	a*	is	perpendicular	to	the	real-space	b-c
plane,	with	similar	relationships	holding	for	other	planes.	To	visualize	reciprocal	space,	note	that	the	real	lattice	translates	into	a	reciprocal	lattice	with	inverse	spacing	between	lattice	points	(Fig.	1).	The	extended	space	along	the	x-axis	shortens	in	the	reciprocal	lattice,	and	reciprocal	vectors	are	perpendicular	to	other	real-space	lattice	vectors.	This
concept	extends	to	three	dimensions,	where	reciprocal	lattice	vectors	are	perpendicular	to	planes	formed	by	other	two	real-space	lattice	vectors.	Maintaining	the	inverse	spacing	relation	enables	indexing	of	diffraction	patterns	from	single	crystals	(spot	pattern)	or	poly-crystals	(ring	pattern).	Given	article	text	here	The	diffraction	pattern	can	be
calculated	using	the	obtained	diffraction	data.	The	process	starts	with	determining	the	wavelength	of	the	incident	beam,	which	is	dependent	on	the	accelerating	voltage.	For	a	beam	energy	of	200	keV,	the	electron	beam	wavelength	is	approximately	2.51	pm.	The	first	step	is	to	calculate	the	wavelength	of	the	incident	beam	from	the	accelerating
voltage	used	in	the	TEM,	which	serves	as	the	starting	point	for	further	calculations.	The	Bragg's	condition	states	that	diffraction	occurs	when	the	inverse	interplanar	spacing	falls	on	the	reciprocal	Ewald's	sphere.	This	can	be	represented	by	the	equation:	1/d	*	sin(θ)	=	θ,	where	d	is	the	interplanar	spacing	and	θ	is	the	diffraction	angle.	The	diffraction
angle	is	twice	the	angle	between	the	planes	(2θ),	as	indicated	in	Fig.	3.	The	relationship	between	the	interplanar	spacing	and	separation	between	diffraction	spots	can	be	established	using	similar	triangles,	which	enables	linking	real	space	parameters	to	reciprocal	space	parameters.	To	obtain	physical	parameters	from	the	ring	or	spot	pattern,	we
start	by	evaluating	the	ring	pattern	(Fig.	4).	The	radius	of	each	ring	is	measured,	and	the	ratio	of	consecutive	rings	is	calculated.	This	ratio	is	correlated	with	the	interplanar	spacing	of	the	crystals,	allowing	us	to	identify	the	crystal	structure	responsible	for	the	symmetry.	Once	the	crystal	structure	is	identified,	the	lattice	parameter	needs	to	be
evaluated.	The	camera	length	can	be	obtained	using	a	standard	crystal	with	known	lattice	parameters,	such	as	gold	(L	=	1.86	m).	The	value	of	L*λ	(camera	constant)	is	then	calculated	based	on	fixed	parametric	conditions	and	is	used	to	determine	the	diameter	of	individual	diffraction	spots.	The	key	parameters	that	need	to	be	determined	include	the
wavelength	of	the	incident	beam,	interplanar	spacing,	diffraction	angle,	camera	length,	and	lattice	parameter.	These	values	can	be	obtained	by	analyzing	the	ring	pattern,	which	is	a	crucial	step	in	determining	the	crystal	structure	and	its	properties.	Given	text	here	The	interplanar	spacing	d	can	be	calculated	using	the	given	ring	diameter	and
equation.	For	the	(111)	plane	with	a	diameter	of	2	cm,	the	value	of	d	is	obtained	as	2.335	Å	or	0.2335	nm	using	equation	(4).	Since	the	identified	crystal	system	is	cubic,	where	a	=	b	=	c,	we	can	use	the	relation	for	the	(hkl)	plane	to	calculate	the	lattice	parameter.	With	the	first	diffracting	plane	identified	as	(111),	the	value	of	the	lattice	parameter	is
found	to	be	4.044	Å	or	0.4044	nm.	Analyzing	the	spot	pattern	obtained	from	the	diffraction	experiment,	we	observe	that	each	spot	represents	a	specific	diffracting	plane	and	multiple	crystals	have	not	overlapped	to	produce	this	ring	pattern.	From	the	spot	pattern,	the	angles	between	planes	and	the	separation	distance	can	be	determined,	preserving
the	vector	relationship.	Further	analysis	reveals	symmetry	in	the	spot	pattern,	appearing	as	four-fold	initially	but	requiring	closer	examination	to	confirm	either	4-fold	or	1-fold	symmetry	for	the	given	zone	axis.	If	assuming	a	4-fold	symmetry,	further	analysis	suggests	that	the	crystal	could	be	either	cubic	or	tetragonal,	with	the	need	to	consider
diffraction	from	the	other	zone	axis	incorporating	the	third	axis.	The	animation	illustrates	how	the	real	lattice	and	its	reciprocal	lattice	are	related,	although	it	excludes	the	c*	vector.	It	is	essential	to	note	that:	-	In	the	reciprocal	lattice,	vectors	a*	and	b*	are	used,	with	a	separation	angle	of	γ*.	-	a*	is	perpendicular	to	(100)	planes	and	has	the	same
magnitude	as	1/d100.	-	Similarly,	b*	is	perpendicular	to	(010)	planes	and	equals	1/d010	in	magnitude.	-	The	relationship	between	γ	and	its	reciprocal	γ*	adds	up	to	180º.	This	periodicity	in	the	reciprocal	lattice	can	be	determined	by	\({\rho	_{hkl}}^	*\)	=	\(\frac{1}{{{d_{hkl}}}}\).	The	general	reciprocal	lattice	vector	for	a	(h	k	l)	plane	is	represented
as	\({s_{hkl}}\)	=	\(\frac{{{{\rm{n}}_{hkl}}}}{{{d_{hkl}}}}\),	where	nhkl	denotes	the	unit	vector	perpendicular	to	the	hkl	planes.	This	concept	applies	to	crystals	and	helps	generate	a	reciprocal	lattice	from	its	crystal	lattice.	The	units	in	this	space	are	Å-1	or	nm-1.
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